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Abstract. The infinite-range four-state clock spin glass, in the presence of an arbitmy magnetic 
field, is investigated by the replica method. The appropriate replica-symmetry breakhg scheme 
is discussed for this model. It is shown that two distinct ALmeida-Thouless lines are possible, 
depending on the direction of the applied field. The full phase diagram of the model, showing 
its inrtnbility repions, is presented and discussed. 

1. Introduction 

The issue of spin glasses has become one of the most intriguing problems in the physics of 
disordered systems in recent years [1,2]. Its mean-field theory, in which the prototype is 
based on the solution of the infinite-range k ing  spin glass, i.e. the Sherringtou-Kirkpatrick 
(SK) model [3], has posed many unusual properties, which were, at the beginning, peculiar 
to this model. One of the most striking novelties was the Almeida-Thouless (AT) line [4], 
signalling a phase transition in the presence of an external magnetic field. Below the AT 
line, the correct description of the system is given in terms of an infinite number of order 
parameters, i.e. an order parameter function [5], associated with many local free-energy 
minima. 

The outstanding question of the moment concerns the applicability of this theory for the 
description of real spin glasses. Based on domain-wall renormalization-group arguments for 
spin glasses [6,7], Fisher and Huse [8] proposed a model, known as the droplet model, the 
main conclusions of which are contrary to those of the SK model. Essentially, they claim 
that the AT line is an artefact of mean-field theory and that, in any finire dimension, the 
spin-glass phase should be described in terms of a single thermodynamic state (together 
with its corresponding time-reversed one). The droplet model has been seriously criticized 
[9, IO], and the latest numerical simulations suggest its failure for d = 4 [ l l ,  121 but are 
not conclusive for d = 3 [12, 131. In addition, recent Monte Carlo computations in high 
but finite dimensions [14] exhibit the same SK features, and it  has been argued that standard 
renormalization-group approaches are not appropriate for spin glasses 1151, which seem to 
present new universality rules concerning critical exponents [ 16,171. Many experimental 
realizations [ 11 claim to have observed a line corresponding to strong irreversibility effects, 
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which could well be identified with the AT line. So, it may be that some of the features 
predicted by mean-field theory could be present in real systems. Besides that, the formalism 
developed for the SK model has been applied in many other problems, e.g. optimization 
and neural networks. Hence, the study of infinite-range spin-glass models deserves much 
attention for their great relevance. 

Although the mean-field theory of the Ising spin glass is considered nowadays to be 
well understood through the solution of the SK model, its generalizations to more complex 
spin variables has led to many novel questions. For continuous spins (m-vector spin glasses 
(m  > 2)), a different transition line in a field is obtained 118,191, whereas in what concerns 
replica-symmetry breaking (RSB) [5], no qualitative changes are noticed [20,21]. For discrete 
spin variables, one may observe qualitative changes in both RSB [22-241 and transitions in 
a field [25]. 

In this paper we investigate the four-state clock spin glass [26] in the presence 
of an arbitrary magnetic field. We discuss what should be the appropriate recipe for 
implementation of the Parisi scheme for a &-replica king spin glass with different magnetic 
fields on each n-replica group. We also show that, depending on thc direction of the applied 
field, two AT lines are possible. each associated with an Ising-model instability. In section 
2 we introduce the model and discuss its main properties. In section 3 we present the 
phase diagram of the model in the presence of an arbihary magnetic field, as well as the 
appropriate RSB scheme. Finally, in section 4 we present our conclusions. 

2. The model 

We shall define the four-state clock spin glass [26] in three equivalent ways (hereafter 
referred to as representations I, ll and Ill); each definition will turn out to be morc appropriate 
for the description of certain properties. We first introduce the model in terms of its XY 
Cartesian components (representation I), defined through the Hamiltonian 

where 
quenched random couplings distributed according to, 

denotes a sum over all distinct pairs of spins (i = 1 ,2 , .  . . , N)  and ( J ; j )  are 

P ( J , , )  = ( N / ~ T J ' ) ' ~  exp(-NJ;/2JZ). (2.2) 

The spin components can only assume the discrete values 

Si, = cos inki St, = sin inki (ki = 0, 1 ,2 ,3 )  (2.3) 

and the external magnetic field, h = (hz ,  h y ) ,  is allowed, in principle, to point in any 
direction in the XY plane. 

An equivalent definition of the four-state clock spin glass is given by introducing two 
Ising variables (representation ll) at each site ( rz ,  0; = f l ) ,  through the change of variables 

in  terms of which the Hamiltonian in (2.1) may be written as 
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with 

hr = f (hx  + h y )  h ,  = f(h, - h y ) .  (2.6) 

Within this representation, the model is described in terms of two independent king 
systems, each with coupling constants rescaled by a factor of f (with respect to those 
of equation (2,1)), and in the presence of its own magnetic field. Hence, the partition 
function of the whole system, for a given bond realization, Z ( J i j )  is factorizable: 

ZlJi j l  = & { J i j I & { J i j l  (2.7) 

such that the average over the disorder (which is taken on In Z { J j j ] ,  in the quenched case), 
leads to a free energy per spin, 

f = f r + f c .  (2.8) 

This additivity property, as stated above, should be preserved by any formalism used to 
deal with this model. 

As usual, in order to perform the average over the disorder, [ ] J ,  one makes use of the 
replica trick [l], by means of which the free energy per spin becomes 

1 1 
-,9f = lim - [ l n Z ] ~  = lim lim -([Z"]J - 1) 

N-m N N- rm n+O N n  

where Z" is the partition function of n independent copies (or replicas) of the system. 

descent method to evaluate [ Z n ] ,  and get 
Assuming that the limits in (2.9) can be freely interchanged, one may use the steepest 

(2.10) 1 .  ,9f = lim - mn[g] 
n-to n 

where, in representation I, 

(2.1 la) 

(2.11b) 

In the equations above, 01 and ,9 are replica labels (or, ,9 = 1,2, . . . , n), p and v denote 
Cartesian components (p, v = x, y )  and stand for sums over distinct pairs of 
replicas. The free-energy extrema give us the equations of state 

&a, 

(2.12a) 

(2,12b) 
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In a similar way, in representation I1 one obtains 

(2.13h) 

where the summations over P P  are now totally unrestricted and 

q,"8 = ( 7 " T q  q:p = (U%P) (a # 0) (2.14a) 

t a p  = (70Luf7 (any a, p ) .  (2.14b) 

The parameters tu@, which measure the correlations in replica space between two 
originally-independent Ising models, are generated in the averaging process [27,28], due to 
the fact that both models are subject to the same disorder. One should keep in mind that, 
after taking the appropriate n -+ 0 limit, the additivity property (2.8) must be restored. For 
this to happen, one should have either one of the following possibilities: 

(i) the t-dependence is completely removed after the n + 0 limit is performed; 
(ii) the parameters t@ factorize as 

two = ( r a d )  = (t")(d) = m:m! (any a, @) (2.15) 

where m: and m$ are magnetization parameters for the T and U systems, respectively. In 
this case, one can prove the aditivity property (2.8). 

At this point, one may choose particular parametrizations for the matrix elements (2.12) 
(or (2.14)). The simplest of them is the replica symmetry (RS) ansatz [3] which, for 
representation 11, is given by 

q;P = qrqn eo - - q c  M l a f  B )  (2.16a) 

tup = t (all 01.8). (2.165) 

Within this choice, one may show that possibility (i) above is satisfied, whereas (ii) is not, 
and therefore requirement (2.8) is fulfilled (see appendix). However, it is a well-known fact 
that such parametrization leads to instabilities at low temperatures [4], and one must look 
for other types of solutions. 

Now, we infroduce another representation for the four-state clock spin glass 
(representation m). Let us consider an SK model within a 2n-replica space, such that in 
each n-replica group a different magnetic field is applied. Defining 

T U  (b = 1 , .  . .  .n)  
(b  = n + 1,. . . ,2n) 
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one has a (2n x Zn) matrix (r), with elements, rub = (<"eb), given by 

The free-energy functional in (2.13) becomes 

Within this representation, such a model has been the subject of much interest and some 
controversy in the literature [1,28-311, in particular as to what is the most appropriate way 
to cany out the RSB process. This point will be discussed in the next section, together with 
the instabilities of the RS solutions (2.16). 

3. Replica-symmetry breaking 

In the case h,  = h, it is clear that the zeroth step in the RSB process corresponds to a 
matrix r with diagonal elements rbb = 0 and equal off-diagonal ones, i.e. 

qz = qw = f .  (3.1) 

The effect of a small difference in the fields, h,  # h,, is to break the permutation 
symmetry of the 2n replicas. Basically, two ways of performing the RSB for the 2n x 2n 
matrix r have been discussed in the literature 111, as we mention below. 

(i) Split the matrix into distinct n x n blocks at the lowest level, such that 

q y  = q,(l - &@) q:p = qv(l - S a p )  tup = t (3.2) 

where 6,j is Kronecker's delta. This can be seen as a particular choice for the first RSB step 
in the case h, = h,. Within this procedure, a small difference in the fields corresponds to 
raising the order in the RSB, defining the start of the process. At this level, one should notice 
that the free energy is independent of the parameter t ,  as discussed in the previous section. 
Now, Parisi's recipe is implemented for the diagonal blocks, whereas the off-diagonal ones 
are left untouched. 

(ii) AppZ 'qrisi's RSB recipe for each n x n  block separately [ I ,  311, setting the diagonal 
elements q;= = qr = 0 and taw = r(1). The resulting free energy will depend on 
tau = r(l) [l], which is given in the appendix (equation (A.8)). 

We argue that only procedure (i) is physically acceptable, since the resulting free energy 
will present no t-dependence, preserving the additivity property (2.8). Procedure (ii) will 
not satisfy (2.8) since the parameters tu' are not factorizable as products of magnetizations 
(see the appendix). 

Within procedure (i), one ends up with 

f[sz(X).40(X)I = frIqr(4l+fc[q,(x)l (3.3) 
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where fr[qi ( x ) ]  ( f s [ q c ( x ) l )  is the corresponding Ising free-energy functional [32 ,33]  (with 
the rescaling J -+ J / 2 )  of the r(u) system. 

Let us now consider the instabilities of the RS solution, in the general case of an arbitrary 
magnetic field h = (hL, h?). Due to the result (3.3) it is clear that one will obtain distinct 
instability regions, each associated with the RSB of an Ising spin glass in the presence 
of its respective field, given in (2.6). Such instabilities will be AT-like and only in the 
particular case of a field aligned along one of the Cartesian axis, h = ( h x ,  0) for which 
h, = h,, or h = (0, hy) where h, = -hr, does one obtain a single AT line. The general 
picture consists of two independent surfaces which split the (Az, h,. T) space into regions, 
as shown in figure 1 (the AT line has been reproduced numerically many times before [ 11, 
so we just present its usual form in this problem), where both systems ( r  and U )  are in RS; 
one of the systems is in RS and for the other, RS should be broken; both systems should be 
treated within the RSB. In figure 1 we show the intersections of these surfaces with planes 
of the type h, = ch, (c constant) in two cases, i.e. c > l(h, > h, > 0) and c = 1 
( h ,  > h, = 0). In the former case (c > I )  one finds two AT lines. For a fixed value of the 
magnetic field, at high temperatures, both king systems are stable within RS. By lowering the 
temperature, one meets the first AT line (T = TpT(h,)), associated with RSB in the T system 
only, and by further decreasing T one meets the second AT line (T = TiT(h,,)), associated 
with the U system. The region in between the two lines (TRT(h,) e T e TpT(h,)), is 
characterized by RSB in the r system and RS in the U system, whereas for T e TtT(h,), 
both should be treated within the RSB. In the latter case (c = 1) the two lines are superposed, 
signalling a crossover, in the sense that for c > 1 the r-line appears ai a higher temperature, 
TPT(h,) > TRT(h,,), whereas for c e 1, the lines are switched, i.e. TpT(h,) e TRT(h0). 

Figure 1. Schematic plot showing the two independent instability surfaces in the (hx, h,. 7 )  
space. inside U cube with side of unituy length. Intersections of these surfaces wilh the plme 
h, = 2h, are represented, showing WO AT lines: the higher-temperature one corresponds to an 
instability in the 0 system (full curve). whereas the lower-tempemwe one is associated with 
the T system (dotted curve). 
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4. Conclusion 

We have studied the infinite-range four-state clock spin glass in the presence of an arbitrary- 
direction magnetic field in the X Y  plane. Within one of its  representations, i.e. two 
independent king systems, we have discussed the RSB scheme for this model. From the 
two usually presented RSB procedures, we have argued that only one of them is physically 
acceptable, as it preserves the additivity of the free energies of the independent k ing  systems. 
The instabilities of the RS solution are of the AT type; two surfaces, each associated with an 
SK model, are presented, separating regions where both, only one or none, of the systems 
are stable. 
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Appendix 

In this appendix, we treat the four-state clock spin glass in the RS ansatz (equations (2.16)). 
Within this approximation, the free energy in (2.10) becomes 

-/D[z]in(2cosh$) - s D[z]ln(2cosh$) (A.1) 

where the t-dependence outside the integrals has disappeared in the n --t 0 limit. In the 
equation above, 

qj = $ B J ( q ,  - t ) ' / * x  + I@Jtl /*z  + Bh, (A.2a) 

1/1 = f B J ( q ,  - t ) 1 / 2 y + ~ B J t 1 / Z z + B h ,  (A.2b) 

and 

The two multiple integrals appearing in (A.1) may be transformed into single integrals and 
the t-dependence removed, by the following respective changes in variable: 

(A.4a) 

(A.4~2) 

(ASa) 

(A.56) 
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Using this, the free energy becomes 

f = f< + f" (A.6) 

where 

Bfw = - ~ ( 1  cs JY - q w ) ' - /  ~ e x p ( - 1 ) 1 n [ 2 c o s h ( ? q ~ / 2 s + B h , ) ]  ds S2 B J  ( A 7 4  
-m 2n 

(A.7b) 

with o = T ( S  = U), U ( $  = U), representing the two SK models, each of them with rescaled 
widths 512. 

One may also see that the parameter f in RS is given by 

e 

t = / D [ z ] t a n h + t a n h @  (A.8) 

which may not be written in the form (2.15), i.e. t # m,m,. 
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